FORMATION OF CYCLODIETHERS FROM 6-METHYL-5-HEPTEN-2-OL AND CITRONELLOL IN THE PRESENCE OF BORON TRIFLUORIDE ETHERATE

Kimiko NAGAI, Mitsuru NAKAYAMA, and Shûichi HAYASHI

Department of Chemistry, Faculty of Science, Hiroshima University

Higashisenda-machi, Hiroshima 730

On treatment with boron trifluoride etherate at room temperature, 6-methyl-5-hepten-2-ol and citronellol dimerized to give dioxamonocyclic compounds in a good yield.

In a previous paper on action of boron trifluoride etherate (BF $_3$ OEt $_2$) towards geranyl alcohol, formation of both digeranyl and linally geranyl ethers has been reported. In this paper, 6-methyl-5-hepten-2-ol 2) and citronellol 3) which contain one double bond in the \$ or \complement -position for the hydroxyl group were respectively submitted to the action of BF $_3$ OEt $_2$ to give monocyclic saturated diethers in a good yield. This method is interesting one for preparation of the cyclic diethers.

Formation of 2,2,6,8,8,12-Hexamethyl-1,7-dioxacyclododecane (I): 6-Methyl-5-hepten-2-ol (10 g), mixed with BF₃OEt₂ (5 ml), allowed to stand at room temperature for 6 days. The reaction mixture was subjected to fractional distillation followed by elution chromatography on silica gel with a hexane-ethyl acetate mixture to give I as a colorless oily substance, d_4^{2O} 0.8695 and n_D^{19} 1.4251, in 80 % yield. The molecular formula of I was determined as $C_{16}H_{32}O_2$ (M+ 256, molecular weight (Rast): 252). The IR spectrum exhibited the presence of ether bonds (1098 and 1069 cm⁻¹) and geminal dimethyl groups (1389 and 1372 cm⁻¹) and the absence of double bonds. The catalytic hydrogenation of I over Adams catalyst in acetic acid showed no hydrogen uptake. These evidences indicate I to be a saturated monocyclic diether. The NMR spectrum taken in a CDCl₃ solution exhibited the proton signals at 8 1.14 (6H, d, J=7Hz, CH_3 - CH_0 -CH

and the methyne proton at \$ 3.47 was confirmed by double-irradiation experiment. The mass spectrum contained several characteristic ions at m/e 69(base), 81(30%, $^{\rm C}_{6}^{\rm H}_{9}$), 107(20, $^{\rm C}_{8}^{\rm H}_{11}$), 109(26, $^{\rm C}_{8}^{\rm H}_{13}$), 129(11, $^{\rm C}_{8}^{\rm H}_{17}^{\rm O}$), 135(9, $^{\rm C}_{10}^{\rm H}_{15}$), 220(14, $^{\rm M}_{10}^{\rm H}_{10}^{\rm H}_{10}$

Formation of 2,2,6,10,10,14-Hexamethyl-1,9-dioxacyclohexadecane (II): When citronellol was subjected to reaction with BF3OEt2 (1 ml) at room temperature for 3 days, II was obtained as colorless needles, mp 61-62°C, in a yield of 32 %. The molecular formular of II was determined to be $C_{20}H_{40}O_2$ (M⁺ 312, molecular weight (Rast): 317). The IR spectrum and no hydrogen uptake on catalytic hydrogenation showed the absence of a double bond. Thus it is certain that II was a saturated monocyclic diether. The IR and NMR spectra exhibited the presence of two methyl groups ($\$^{\text{CDCl}}_{\text{ppm}}$ 3 : 0.85, 6H, J=6Hz, CH₃-CH- X 2), two geminal dimethyl groups ($\sqrt[]{\frac{\text{CCl}}{\text{max}}}$ 4 1380, 1362 cm⁻¹; \$ 1.10, 12H, s, (CH₃)₂C-0- X 2) and two ether linkages (1085 cm⁻¹; \$ 3.28, 4H, t, J=6Hz, $-C=0-CH_2-CH_2-X$ 2). When (100 mg) was heated with 0.2 ml of hydroiodic acid (d=1.7) for 10 minutes, it was converted into $\rm C_{10}^{\rm H}_{\rm 20}$ (M $^{+}$ 140) and $\rm C_{10}^{\rm H}_{\rm 20}^{\rm I}$ (M $^{+}$ 267). These facts were reasonably explained by the structure of II, which was also supported by the mass spectrum containing m/e 81(29%), 83(base, $C_{6}H_{11}$), 138(25, $C_{10}H_{18}$), 140(50, $C_{10}H_{20}$), 157 (25, $c_{10}H_{21}O)$, 199(11, $M^+ - c_8H_{17}O$), 276(trace, $M^+ - 2H_2O$), 297(11, $M^+ - 15$) and $312(2, M^+)$ ions.

References

- 1) K.Nagai, Chem. Pharm. Bull., 18,2123(1970).
- 2) dl-6-Methyl-5-hepten-2-ol (bp 176°C, n_D^{17} 1.4401) was prepared from 6-methyl-5-hepten-2-one (n_D^{20} 1.4391) [R.F.Nystrom, and W.G.Brown, J.Amer.Chem.Soc., 69,1197(1947)].
- 3) Commercial citronellol was used after repeating the fractionation. Bp 109.0° C/4mmHg, d_4^{25} 0.8530, n_D^{25} 1.4539, $\left[\kappa\right]_D^{25} \pm 0^{\circ}$ in CHCl₃.

(Received April 9, 1973)